જો $a > 0$ અને $z = \frac{{{{\left( {1 + i} \right)}^2}}}{{a - i}}$ જેનો માનક $\sqrt {\frac{2}{5}} $ થાય તો $\bar z$ ની કિમત મેળવો.
$ - \frac{3}{5} - \frac{1}{5}i$
$ - \frac{1}{5} - \frac{3}{5}i$
$ - \frac{1}{5} + \frac{3}{5}i$
$ \frac{1}{5} - \frac{3}{5}i$
$\mid 1$ - $\left.\mathrm{i}\right|^x=2^x$ ના ઉકેલોની સંખ્યા $\alpha$ અને $\beta=\left(\frac{|z|}{\arg (\mathrm{z})}\right)$, જ્યાં $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ તો $(\alpha, \beta)$ નું $4 x-3 y=7$ થી અંતર મેળવો.
$z=\alpha+i \beta$ માટે જો $|z+2|=z+4(1+i)$ હોય, તો $\alpha+\beta$ અને $\alpha \beta$ એ $.........$ સમીકરણ ના બીજ છે.
જો $z$ એ સંકર સંખ્યા છે કે જેથી $|z - \bar{z}| = 2$ અને $|z + \bar{z}| = 4 $, હોય તો નીચેનામાંથી ક્યૂ ખોટું છે ?
જો $z$ માટે $\left| z \right| = 1$ અને $z = 1 - \vec z$ તો.
વિધાન $1$ : $z$ એ વાસ્તવિક સંખ્યા છે.
વિધાન $2$ : $z$ નો મુખ્ય કોણાંક $\frac{\pi }{3}$ છે.
$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$= . . . ..