8. Sequences and Series
hard

यदि $a _{1}, a _{2}, a _{3}, \ldots .$ एक समान्तर श्रेणी में इस प्रकार हैं कि $a _{1}+ a _{7}+ a _{16}=40$ है, तो इस समान्तर श्रेणी के प्रथम $15$ पदों का योगफल है

A

$200$

B

$280$

C

$150$

D

$120$

(JEE MAIN-2019)

Solution

${a_1},{a_2},….{a_n}$ are in A.P.

${a_1} + {a_7} + {a_{16}} = 40$

$ \Rightarrow a + a + 6d + a + 15d = 40$

$ \Rightarrow 3a + 21d = 40$

$ \Rightarrow a + 7d = \frac{{40}}{3}$

$515 = \frac{{15}}{2}\left[ {2a + 14d} \right]$

$ = 15\left[ {a + 7d} \right]$

$ = 15 \times \frac{{40}}{3}$

$ = 200$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.