यदि $a _{1}, a _{2}, a _{3}, \ldots .$ एक समान्तर श्रेणी में इस प्रकार हैं कि $a _{1}+ a _{7}+ a _{16}=40$ है, तो इस समान्तर श्रेणी के प्रथम $15$ पदों का योगफल है
$200$
$280$
$150$
$120$
यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$), तब $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }}$ का मान होगा
$p,\;q,\;r$ समान्तर श्रेणी में एवं धनात्मक हैं तो वर्ग समीकरण $p{x^2} + qx + r = 0$ के मूल वास्तविक होंगे, यदि
उस समांतर श्रेणी के $n$ पदों का योगफल ज्ञात कीजिए, जिसका $k$ वाँ पद $5 k +1$ है।
यदि $x^{2}-3 x+p=0$ के मूल $a$ तथा $b$ हैं तथा $x^{2}-12 x+q=0,$ के मूल $c$ तथा $d$ हैं, जहाँ $a, b, c, d$ गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि $(q+p):(q-p)=17: 15$
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=3, a_{n}=3 a_{n-1}+2$ सभी $n>1$ के लिए