7.Binomial Theorem
hard

यदि $\left( x +\sqrt{ x ^{2}-1}\right)^{6}+\left( x -\sqrt{ x ^{2}-1}\right)^{6}$ के प्रसार में $x ^{4}$ तथा $x ^{2}$ के गुणांक क्रमशः $\alpha$ तथा $\beta$ हैं, तो 

A

$\alpha+\beta=60$

B

$\alpha+\beta=30$

C

$\alpha-\beta=-132$

D

$\alpha-\beta=60$

(JEE MAIN-2020)

Solution

$2\left[^{6} \mathrm{C}_{0} \mathrm{x}^{6}+^{6} \mathrm{C}_{2} \mathrm{x}^{4}\left(\mathrm{x}^{2}-1\right)+6 \mathrm{C}_{4} \mathrm{x}^{2}\left(\mathrm{x}^{2}-1\right)^{2}+^{6} \mathrm{C}_{6}\left(\mathrm{x}^{2}-1\right)^{3}\right]$

$\alpha=-96 \;and\; \beta=36$

$\therefore \alpha-\beta=-132$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.