${\left( {{x^2} - \frac{{3\sqrt 3 }}{{{x^3}}}} \right)^{10}}$ के विस्तार में $x$ से स्वतंत्र पद होगा
$153090$
$150000$
$150090$
$153180$
माना $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$ के प्रसार में सातवें तथा तेरहवें पदों के गुणांक क्रमशः $m$ तथा $n$ है। तो $\left(\frac{n}{m}\right)^{\frac{1}{3}}$ बराबर है :
${({y^{ - 1/6}} - {y^{1/3}})^9}$ के विस्तार में $y$ से स्वतंत्र पद है
${\left( {\frac{{3{x^2}}}{2} - \frac{1}{{3x}}} \right)^9}$ के विस्तार में $x$ से स्वतंत्र पद है
$\left(x-\frac{3}{x^{2}}\right)^{m}, x \neq 0,$ जहाँ $m$ एक प्राकृत संख्या है, के प्रसार में पहले तीन पदों के गुणांकों का योग $559$ है। प्रसार में $x^{3}$ वाला पद ज्ञात कीजिए।
$\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद है