यदि $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ तथा $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}, \alpha$, $\beta \in\left(0, \frac{\pi}{2}\right)$, हैं, तो $\tan (\alpha+2 \beta)$ बराबर ........ है |
$1$
$2$
$2.5$
$3.5$
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $
$\tan 5x\tan 3x\tan 2x = $
माना $\cos (\alpha+\beta)=\frac{4}{5}$ और $\sin (\alpha-\beta)=\frac{5}{13},$ जहाँ $0 \leq \alpha, \beta \leq \frac{\pi}{4}$ तो $\tan 2 \alpha$ बराबर है
निम्नलिखित को सिद्ध कीजिए
$\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$