यदि $c$ एक बिंदु है जिस पर, अंतराल $[3,4]$ में, फलन $f( x )=\log _{ e }\left(\frac{ x ^{2}+\alpha}{7 x }\right)$ पर रोले प्रमेय लागू होता है, जहाँ $\alpha$ $\in R$ है, तो $f^{\prime \prime}( c )$ बराबर है
$\frac{\sqrt{3}}{7}$
$\frac{1}{12}$
$-\frac{1}{24}$
$-\frac{1}{12}$
यदि $f:[-5,5] \rightarrow R$ एक संतत फलन है और यदि $f^{\prime}(x)$ किसी भी बिंदु पर शून्य नहीं होता है तो सिद्ध कीजिए कि $f(-5) \neq f(5)$
वक्र $y = {x^3}$ पर अन्तराल $ [-2, 2]$ के बीच स्थित उन बिन्दुओं के भुज, जिन पर खींची गई स्पर्शियों की प्रवणतायें अन्तराल $ [-2, 2]$ के लिए मध्यमान प्रमेय (Mean value theorem) द्वारा ज्ञात की जा सकती हैं, हैं
अंतराल $ [0, 1] $ में लैंगरेंज मध्यमान प्रमेय निम्न में से किसके लिए लागू नहीं है
मध्यमान प्रमेय $f(b) - f(a) = (b - a)f'({x_1});$ $a < {x_1} < b$ से यदि $f(x) = \frac{1}{x}$, तो${x_1} = $
मान लीजिए कि $f: R \rightarrow R$ अभिकलनीय फलन $(differentiable\,functon)$ इस प्रकार है कि किन्हीं $a < b$ के लिए $f(a)=0=f(b)$ और $f^{\prime}(a) f^{\prime}(b) > 0$ है। अंतराल $(interval$;' $( a , b )$ में $f( x )$ के मूलों $(roots)$ की न्यूनतम संख्या क्या है ?