यदि $A$ और $B$ स्वतंत्र घटनाएँ हैं तो $A$ या $B$ में से न्यूनतम एक के होने की प्रायिकता $=1- P \left( A ^{\prime}\right) P \left( B ^{\prime}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have

$P($  at least one of $A $ and $ B)=P(A \cup B)$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})[1-\mathrm{P}(\mathrm{A})]$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) . \mathrm{P}\left(\mathrm{A}^{\prime}\right)$

$=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \mathrm{P}\left(\mathrm{A}^{\prime}\right)$

$=1-P\left(A^{\prime}\right)[1-P(B)]$

$=1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)$

Similar Questions

तीन परस्पर अपवर्जी घटनाओं की प्रायिकताएँ $\frac{2}{3} ,  \frac{1}{4}$ तथा $\frac{1}{6}$ हैं यह कथन है

एक शहर में $20\%$ लोग अंगे्रजी समाचार पत्र पढ़ते हैं, $40\%$ हिन्दी समाचार पत्र पढ़ते हैं एवं $5\%$ दोनों अखबार पढ़ते हैं, तो अखबार न पढ़ने वालों का प्रतिशत है

यदि घोड़े $A$ के किसी दौड़ को जीतने की प्रायिकता $1/4$ हो और घोड़े $B$ के उसी दौड़ को जीतने की प्रायिकता $1/5$ हो, तो उनमें से किसी एक के दौड़ को जीतने की प्रायिकता है

$A$ व $B$ के एक वर्ष में मरने की प्रायिकतायें क्रमश: $p$ व $q$ हैं तो उनमें से केवल एक वर्ष के अन्त में जिन्दा रहे, इसकी प्रायिकता है

एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है

क्रम. नाम लिंग आयु ( वर्षो में )
$1.$ हरीश $M$ $30$
$2.$ रोहन $M$ $33$
$3.$ शीतल $F$ $46$
$4.$ ऐलिस $F$ $28$
$5.$ सलीम $M$ $41$

इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?