यदि $A$ और $B$ स्वतंत्र घटनाएँ हैं तो $A$ या $B$ में से न्यूनतम एक के होने की प्रायिकता $=1- P \left( A ^{\prime}\right) P \left( B ^{\prime}\right)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have

$P($  at least one of $A $ and $ B)=P(A \cup B)$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})[1-\mathrm{P}(\mathrm{A})]$

$=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B}) . \mathrm{P}\left(\mathrm{A}^{\prime}\right)$

$=1-\mathrm{P}\left(\mathrm{A}^{\prime}\right)+\mathrm{P}(\mathrm{B}) \mathrm{P}\left(\mathrm{A}^{\prime}\right)$

$=1-P\left(A^{\prime}\right)[1-P(B)]$

$=1-P\left(A^{\prime}\right) P\left(B^{\prime}\right)$

Similar Questions

यदि $P(A) = P(B) = x$ तथा $P(A \cap B) = P(A' \cap B') = \frac{1}{3}$ हो, तो $x = $

एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।

तीन घटनाओं $A, B$ एवं $C$ के लिये प्रायिकताओं $P$ ($A$ अथवा $B$ में केवल एक घटित होती है)= $P$ ($B$ अथवा $C$ में केवल एक घटित होती है) = $P$ ($A$ अथवा $C$ में केवल एक घटित होती है)= $p$ तथा $P$ (तीनों घटनाएँ एक साथ घटित होती हैं) $ = {p^2},$ जहाँ $0 < p < 1/2$ है। तीनों घटनाओं $A, B$ और $C$ में कम से कम एक के घटित होने की प्रायिकता है

  • [IIT 1996]

यदि $A$ तथा $B$ दो स्वतन्त्र घटनाएँ हों, तो $P\,(A + B) = $

यदि $A$ तथा $B$ दो स्वतंत्र घटनाएँ हो, जहाँ $P\,(A) = 0.40,\,\,P\,(B) = 0.50.$ तो $P$ (न $A$ और न $B$) ज्ञात कीजिए