જો $R_{1}$ અને $R_{2}$ ગણ $A$ માં સામ્ય સંબંધો હોય, તો સાબિત કરો કે $R_{1} \cap R_{2}$ પણ સામ્ય સંબંધ છે.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since $R _{1}$ and $R _{2}$ are equivalence relations, $(a, a) \in R _{1},$ and $(a, a) \in R _{2}$ $ \forall a \in A$ This implies that $(a, a) \in R _{1} \cap R _{2}, \forall a,$ showing $R _{1} \cap R _{2}$ is reflexive. Further, $(a, b) \in R _{1} \cap R _{2} \Rightarrow(a, b) \in R _{1}$ and $(a, b) \in R _{2} \Rightarrow(b, a) \in R _{1}$ and $(b, a) \in R _{2} \Rightarrow$ $(b, a) \in R_1 \cap R_2$ hence, $R _{1} \cap R _{2}$ is symmetric. Similarly, $(a, b) \in R _{1} \cap R _{2}$ and $(b, c) \in R _{1} \cap R _{2} \Rightarrow(a, c) \in R _{1}$ and $(a, c) \in R _{2} \Rightarrow(a, c) \in R _{1} \cap $ $R _{2} .$ This shows that $R _{1} \cap $ $ R _{2}$ is transitive. Thus, $R _{1} \cap $ $R _{2}$ is an equivalence relation.

Similar Questions

જો $R = \{(6, 6), (9, 9), (6, 12), (12, 12), (12,6)\}$ એ ગણ $A = \{3, 6, 9, 12\}$ પર સંબંધ વ્યાખ્યાયિત હોય તો સંબંધ $R$  એ ...........  છે. 

સંબંધ $R$ એ  $N$ પર $x + 2y = 8$ વ્યાખ્યાયિત હોય તો $ R$ નો પ્રદેશ મેળવો.  

The સંબંધ "congruence modulo $m$" is

જો $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ એ ગણ $A = \{1, 2, 3, 4\}$ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.

  • [AIEEE 2004]

જો $R = \{ (x,\,y)|x,\,y \in Z,\,{x^2} + {y^2} \le 4\} $ એ $Z$ પરનો સંબંધ હોય તો $R$ નો પ્રદેશ મેળવો