4-1.Complex numbers
medium

If $x+i y=\frac{a+i b}{a-i b},$ prove that $x^{2}+y^{2}=1$

Option A
Option B
Option C
Option D

Solution

We have,

$x+i y=\frac{(a+i b)(a+i b)}{(a-i b)(a+i b)}=\frac{a^{2}-b^{2}+2 a b i}{a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{2 a b}{a^{2}+b^{2}} i$

So that, $x-i y=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}-\frac{2 a b}{a^{2}+b^{2}} i$

Therefore,

$x^{2}+y^{2}=(x+i y)(x-i y)=\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}+\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.