If $x+i y=\frac{a+i b}{a-i b},$ prove that $x^{2}+y^{2}=1$
We have,
$x+i y=\frac{(a+i b)(a+i b)}{(a-i b)(a+i b)}=\frac{a^{2}-b^{2}+2 a b i}{a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{2 a b}{a^{2}+b^{2}} i$
So that, $x-i y=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}-\frac{2 a b}{a^{2}+b^{2}} i$
Therefore,
$x^{2}+y^{2}=(x+i y)(x-i y)=\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}+\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1$
Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . .
Let $z$ =${i^{2i}}$ , then $|z|$ is (where $i$ =$\sqrt { - 1}$ )
If $\frac{{z - \alpha }}{{z + \alpha }}\left( {\alpha \in R} \right)$ is a purely imaginary number and $\left| z \right| = 2$, then a value of $\alpha $ is
If $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, then the difference in the amplitudes of ${z_1}$ and ${z_2}$ is
The amplitude of the complex number $z = \sin \alpha + i(1 - \cos \alpha )$ is