જો $x+i y=\frac{a+i b}{a-i b},$ તો સાબિત કરો કે $x^{2}+y^{2}=1$
We have,
$x+i y=\frac{(a+i b)(a+i b)}{(a-i b)(a+i b)}=\frac{a^{2}-b^{2}+2 a b i}{a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{2 a b}{a^{2}+b^{2}} i$
So that, $x-i y=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}-\frac{2 a b}{a^{2}+b^{2}} i$
Therefore,
$x^{2}+y^{2}=(x+i y)(x-i y)=\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}+\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1$
જો સંકર સંખ્યાઓ $(x -2y) + i(3x -y)$ અને $(2x -y) + i(x -y + 6)$ એ એકબીજાને અનુબધ્ધ હોય તો $|x + iy|$ ની કિમત મેળવો $(x,y \in R)$
જો $|{z_1}|\, = \,|{z_2}|$ અને $arg\,\,\left( {\frac{{{z_1}}}{{{z_2}}}} \right) = \pi $, તો ${z_1} + {z_2}$ = . ..
ધારોકે $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$ છે. તો $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$
જો ગણ $\left\{\operatorname{Re}\left(\frac{z-\bar{z}+z \bar{z}}{2-3 z+5 \bar{z}}\right): z \in C , \operatorname{Re}(z)=3\right\}$ બરાબર અંતરાલ $(\alpha, \beta]$ હોય,તો $24(\beta-\alpha)=..........$
જો સંકર સંખ્યા $z$ માટે $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0$ હોય તો $\left| z \right|$ ની કિમત મેળવો.