यदि $x+i y=\frac{a+i b}{a-i b}$ है तो, सिद्ध कीजिए कि $x^{2}+y^{2}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have,

$x+i y=\frac{(a+i b)(a+i b)}{(a-i b)(a+i b)}=\frac{a^{2}-b^{2}+2 a b i}{a^{2}+b^{2}}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}+\frac{2 a b}{a^{2}+b^{2}} i$

So that, $x-i y=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}-\frac{2 a b}{a^{2}+b^{2}} i$

Therefore,

$x^{2}+y^{2}=(x+i y)(x-i y)=\frac{\left(a^{2}-b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}+\frac{4 a^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}=\frac{\left(a^{2}+b^{2}\right)^{2}}{\left(a^{2}+b^{2}\right)^{2}}=1$

Similar Questions

$0$ का कोणांक है

इकाई मापांकों की दो सम्मिश्र संख्याओं का गुणन होगा

यदि $\frac{ z -\alpha}{ z +\alpha}(\alpha \in R )$ एक शुद्ध रूप से काल्पनिक संख्या है, तथा $| Z |=2$ है, तो $\alpha$ का एक मान है

  • [JEE MAIN 2019]

माना सभी सम्मिश्र संख्याओं $z$ का समुच्चय $S$ है जो $\left|z^2+z+1\right|=1$ को संतुष्ट करता है। तब निम्न में से कौनसा/कौनसे कथन सत्य होगा/होंगे?

$(A)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \leq \frac{1}{2}$ होगा।

$(B)$ सभी $z \in S$ के लिये $| z | \leq 2$ होगा।

$(C)$ सभी $z \in S$ के लिये $\left| z +\frac{1}{2}\right| \geq \frac{1}{2}$ होगा।

$(D)$ समुच्चय $S$ में ठीक चार अवयव होंगे।

  • [IIT 2020]

यदि ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ व $z$ एक सम्मिश्र संख्या इस प्रकार है कि  $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4}$, तो $|z - 7 - 9i|$ का मान है

  • [IIT 1990]