यदि$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$तब कोणांक $(z) = $ .............. $^\circ$
$60$
$120$
$240$
$300$
$z$ का वह मान जिसके लिए $|z + i|\, = \,|z - i|$ है
माना $z$ व$w$ दो अशून्य सम्मिश्र संख्यायें इस प्रकार हैं कि $|z|\, = \,|w|$ व $arg\,z + arg\,w = \pi $, तो $z$ बराबर है
यदि $z _1$ तथा $z _2$ दो सम्मिश्र संख्याऐं इस प्रकार है कि $\overline{ z }_1= i \overline{ z }_2$ तथा $\arg \left(\frac{ z _1}{\overline{ z }_2}\right)=\pi$ है। तब $-$
यदि $z_1$ तथा ${z_2}$ दो सम्मिश्र संख्याएँ इस प्रकार हैं कि $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ तथा $i{z_1} = k{z_2}$, जहाँ $k \in R$, तब${z_1} - {z_2}$ तथा ${z_1} + {z_2}$ के मध्य कोण है
मानाकि $z_k=\cos \left(\frac{2 k \pi}{10}\right)+ i \sin \left(\frac{2 k \pi}{10}\right) ; k=1,2, \ldots 9$
List $I$ | List $II$ |
$P.$ प्रत्येक $z _{ k }$ के लिए एक ऐसा $z _{ j }$ है जिसके लिये $z _{ k } \cdot z _{ j }=1$ | $1.$ सत्य |
$Q.$ $\{1,2, \ldots, 9\}$ में एक ऐसा $k$ है कि $z _1 . z = z _{ k }$ का कोई हल $z$ सम्मिश्र संख्याओं (complex numbers) में नहीं है | $2.$ असत्य |
$R.$ $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots . . .\left|1-z_9\right|}{10}$ का मान है- | $3.$ $1$ |
$S.$ $1-\sum_{ k =1}^9 \cos \left(\frac{2 k \pi}{10}\right)$ का मान है- | $4.$ $2$ |
Codes: $ \quad P \quad Q \quad R \quad S$