જો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ ન હોય, તો $n$ નું મૂલ્ય શોધો.
$A.M.$ of $a$ and $b$ $=\frac{a+b}{2}$
According to the given condition,
$\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$
$\Rightarrow(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)$
$\Rightarrow a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n}$
$\Rightarrow a b^{n-1}+a^{n-1} b=a^{n}+b^{n}$
$\Rightarrow a b^{n-1}-b^{n}=a^{n}-a^{n-1} b$
$\Rightarrow b^{n-1}(a-b)=a^{n-1}(a-b)$
$\Rightarrow b^{n-1}=a^{n-1}$
$\Rightarrow\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow n-1=0$
$\Rightarrow n=1$
જો કોઈ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $cn(n -1)$ , જ્યાં $c \neq 0$ , હોય તો આ પદોના વર્ગોનો સરવાળો મેળવો
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_7}$ પદ શોધો : $a_{n}=\frac{n^{2}}{2^{n}}$
જો $(b+c),(c+a),(a+b)$ એ સ્વરિત શ્રેણીમાં હોય તો $a^2,b^2,c^2$ એ ........ શ્રેણીમાં છે
જો સમાંતર શ્રેણીનું પ્રથમ અને અંતિમ પદ $a$ અને $ℓ $ તથા તેના દરેક પદોનો સરવાળો $S$ થાય, તો તેનો સામાન્ય તફાવત કેટલો થાય ?
$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$