यदि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं तो दिखाइए कि $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ $(a b+b c+c d)^{2}$
If $a, b, c$ and $d$ are in $G.P.$ Therefore,
$b c=a d$ ..........$(1)$
$b^{2}=a c$ .........$(2)$
$c^{2}=b d$ .........$(3)$
It has to be proved that,
$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$
$R.H.S.$
$=(a b+b c+c d)^{2}$
$=(a b+a d+c d)^{2}$ [ Using $(1)$ ]
$=[a b+d(a+c)]^{2}$
$=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}$
$=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)$ [ Using $(1)$ and $(2)$ ]
$=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}$
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}$
$=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2}$
[ Using $(2)$ and $(3)$ and rearranging terms ]
$=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)$
$=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ $L.H.S$
$\therefore L .H.S. = R . H.S.$
$\therefore\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$
यदि किसी गुणोत्तर श्रेणी का प्रथम पद $7$, अंतिम पद $448$ तथा पदों का योग $889$ हो, तो श्रेणी का सार्वानुपात होगा
यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है
गुणोत्तर श्रेणी $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$ का $20$ वाँ तथा $n$ वाँ पद ज्ञात कीजिए।
अनुक्रम $8,88,888,8888 \ldots$ के $n$ पदों का योग ज्ञात कीजिए
एक गुणोत्तर श्रेणी का प्रथम पद $a=729$ तथा $7$ वाँ पद $64$ है तो $S _{7}$ ज्ञात कीजिए ?