यदि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं तो दिखाइए कि $\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ $(a b+b c+c d)^{2}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

If $a, b, c$ and $d$ are in $G.P.$ Therefore,

$b c=a d$         ..........$(1)$

$b^{2}=a c$          .........$(2)$

$c^{2}=b d$         .........$(3)$

It has to be proved that,

$\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

$R.H.S.$

$=(a b+b c+c d)^{2}$

$=(a b+a d+c d)^{2}$           [ Using $(1)$ ]

$=[a b+d(a+c)]^{2}$

$=a^{2} b^{2}+2 a b d(a+c)+d^{2}(a+c)^{2}$

$=a^{2} b^{2}+2 a^{2} b d+2 a c b d+d^{2}\left(a^{2}+2 a c+c^{2}\right)$       [ Using $(1)$ and $(2)$ ]

$=a^{2} b^{2}+2 a^{2} c^{2}+2 b^{2} c^{2}+d^{2} a^{2}+2 d^{2} b^{2}+d^{2} c^{2}$

$=a^{2} b^{2}+a^{2} c^{2}+a^{2} c^{2}+b^{2} c^{2}+b^{2} c^{2}+d^{2} a^{2}+d^{2} b^{2}+d^{2} b^{2}+d^{2} c^{2}$

$=a^{2} b^{2}+a^{2} c^{2}+a^{2} d^{2}+b^{2} \times b^{2}+b^{2} c^{2}+b^{2} d^{2}+c^{2} b^{2}+c^{2} \times c^{2}+c^{2} d^{2}$

[ Using $(2)$ and $(3)$ and rearranging terms ]

$=a^{2}\left(b^{2}+c^{2}+d^{2}\right)+b^{2}\left(b^{2}+c^{2}+d^{2}\right)+c^{2}\left(b^{2}+c^{2}+d^{2}\right)$

$=\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=$ $L.H.S$

$\therefore L .H.S. = R . H.S.$

$\therefore\left(a^{2}+b^{2}+c^{2}\right)\left(b^{2}+c^{2}+d^{2}\right)=(a b+b c+c d)^{2}$

Similar Questions

यदि किसी गुणोत्तर श्रेणी का प्रथम पद $7$, अंतिम पद $448$ तथा पदों का योग $889$ हो, तो श्रेणी का सार्वानुपात होगा

यदि दो संख्याएँ $a$ और $b$के बीच $n$ गुणोत्तर माध्य ${G_1},\;{G_2},\;.....$${G_n}$ तथा एक माध्य $G$ हो, तो सत्य सम्बन्ध है

गुणोत्तर श्रेणी $\frac{5}{2}, \frac{5}{4}, \frac{5}{8}, \ldots$ का $20$ वाँ तथा $n$ वाँ पद ज्ञात कीजिए।

अनुक्रम $8,88,888,8888 \ldots$ के $n$ पदों का योग ज्ञात कीजिए

एक गुणोत्तर श्रेणी का प्रथम पद $a=729$ तथा $7$ वाँ पद $64$ है तो $S _{7}$ ज्ञात कीजिए ?