8. Sequences and Series
medium

यदि किसी गुणोत्तर श्रेणी का $p$ वाँ, $q$ वाँ तथा $r$ वाँ पद क्रमश : $a, b$ तथा $c$ हो, तो सिद्ध कीजिए
कि $a^{q-r} b^{r-p} c^{P-q}=1$

Option A
Option B
Option C
Option D

Solution

Let $A$ be the first term and $R$ be the common ratio of the $G.P.$

According to the given information,

$A R^{p-1}=a$

$A R^{q-1}=b$

$A R^{r-1}=c$

$a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$

$=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$

$ = {A^{q – r + r – p + p – q}} \times {R^{(pr – pr – q + r) + (rq – r + p – pq) + (pr – p – qr + q)}}$

$=A^{0} \times R^{0}$

$=1$

Thus, the given result is proved.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.