यदि किसी गुणोत्तर श्रेणी का $p$ वाँ, $q$ वाँ तथा $r$ वाँ पद क्रमश : $a, b$ तथा $c$ हो, तो सिद्ध कीजिए
कि $a^{q-r} b^{r-p} c^{P-q}=1$
Let $A$ be the first term and $R$ be the common ratio of the $G.P.$
According to the given information,
$A R^{p-1}=a$
$A R^{q-1}=b$
$A R^{r-1}=c$
$a^{q-r} \cdot b^{r-p} \cdot c^{p-q}$
$=A^{q-r} \times R^{(p-1)(q-r)} \times A^{r-p} \times R^{(q-1)(r-p)} \times A^{p-q} \times R^{(r-1)(p-q)}$
$ = {A^{q - r + r - p + p - q}} \times {R^{(pr - pr - q + r) + (rq - r + p - pq) + (pr - p - qr + q)}}$
$=A^{0} \times R^{0}$
$=1$
Thus, the given result is proved.
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से $9$ अधिक हो तथा दूसरा पद चौथे पद से $18$ अधिक हो।
माना $a_{1}, a_{2}, a_{3}, \ldots$ गुणोत्तर श्रेणी इस प्रकार है कि $a_{1}<0, a_{1}+a_{2}=4$ तथा $a_{3}+a_{4}=16$. यदि $\sum_{i=1}^{9} a_{i}=4 \lambda$ है, तो $\lambda$ बराबर है
एक $GP$ का चौथा पद $500$ है तथा इसका सार्व अनुपात $\frac{1}{\mathrm{~m}}, \mathrm{~m} \in \mathrm{N}$ है। माना इस $GP$ के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_6>\mathrm{S}_5+1$ तथा $\mathrm{S}_7<\mathrm{S}_6+\frac{1}{2}$ है, तो $\mathrm{m}$ के संभव मानों की संख्या है______________.
यदि $y - x$ तथा $y - z$ के बीच का हरात्मक माध्य $2(y - a)$ है, तब $x - a,\;y - a,\;z - a$ हैं
यदि किसी गुणोत्तर श्रेणी के $n$ पदों का योग $255$, $n$ वाँ पद $128$ एवं सार्व-अनुपात $2$ है, तो प्रथम पद होगा