If $G =\{7,8\}$ and $H =\{5,4,2\},$ find $G \times H$ and $H \times G$.
$G =\{7,8\}$ and $H =\{5,4,2\}$
We know that the Cartesian product $P \times Q$ of two non-empty sets $P$ and $Q$ is defined as
$P \times Q-\{(p, q): p \in P, q \in Q\}$
$\therefore G \times H=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$H \times G=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$
If $P=\{a, b, c\}$ and $Q=\{r\},$ form the sets $P \times Q$ and $P \times Q$ Are these two products equal?
If $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$ then $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ is equal to
If $(x+1, y-2)=(3,1),$ find the values of $\mathrm{x}$ and $\mathrm{y}$.
The solution set of $8x \equiv 6(\bmod 14),\,x \in Z$, are
If two sets $A$ and $B$ are having $99$ elements in common, then the number of elements common to each of the sets $A \times B$ and $B \times A$ are