यदि $G =\{7,8\}$ और $H =\{5,4,2\},$ तो $G \times H$ और $H \times G$ ज्ञात कीजिए।
$G =\{7,8\}$ and $H =\{5,4,2\}$
We know that the Cartesian product $P \times Q$ of two non-empty sets $P$ and $Q$ is defined as
$P \times Q-\{(p, q): p \in P, q \in Q\}$
$\therefore G \times H=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$H \times G=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$
यदि समुच्चय $A$ में $p$ अवयव,$ B$ में $q$ अवयव हैं, तब $ A × B $ में अवयवों की संख्या होगी
मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए
$A \times(B \cup C)$
यदि $ A = \{2, 3, 5\}, B = \{2, 5, 6\}, $ तब $(A -B) × (A \cap B) $ है
मान लीजिए कि $A$ और $B$ दो समुच्चय हैं, जहाँ $n( A )=3$ और $n( B )=2 .$ यदि $(x, 1),$ $(y, 2),(z, 1), A \times B$ में हैं, तो $A$ और $B ,$ को ज्ञात कीजिए, जहाँ $x, y$ और $=$ भिन्न-भिन्न अवयव हैं।
यदि $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ तो $x$ तथा $y$ ज्ञात कीजिए।