જો $G =\{7,8\}$ અને $H =\{5,4,2\},$ તો $G \times H$ અને $H \times G$ શોધો.
$G =\{7,8\}$ and $H =\{5,4,2\}$
We know that the Cartesian product $P \times Q$ of two non-empty sets $P$ and $Q$ is defined as
$P \times Q-\{(p, q): p \in P, q \in Q\}$
$\therefore G \times H=\{(7,5),(7,4),(7,2),(8,5),(8,4),(8,2)\}$
$H \times G=\{(5,7),(5,8),(4,7),(4,8),(2,7),(2,8)\}$
જો $R$ વાસ્તવિક સંખ્યાઓનો ગણ હોય, તો $R \times R$ અને $R \times R \times R$ શું દર્શાવશે ?
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $(A \times B) \cup(A \times C)$
જો $A=\{1,2\}$ અને $B=\{3,4\}$ તો $A \times B$ લખો. $A \times B$ ને કેટલા ઉપગણો હશે ? તે તમામ ઉપગણોની યાદી બનાવો. છે.
જો $A = \{ x:{x^2} - 5x + 6 = 0\} ,\,B = \{ 2,\,4\} ,\,C = \{ 4,\,5\} ,$ તો $A \times (B \cap C)$ = . . . .
જો $A \times B=\{(a, x),(a, y),(b, x),(b, y)\},$ તો $A$ અને $B$ શોધો.