मान लीजिए कि $A =\{1,2\}, B =\{1,2,3,4\}, C =\{5,6\}$ तथा $D =\{5,6,7,8\} .$ सत्यापित कीजिए कि
$A \times(B \cap C)=(A \times B) \cap(A \times C)$
To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$
We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\varnothing$
$\therefore \mathrm{L .H. S .}=A \times(B \cap C)=A \times \varnothing=\varnothing$
$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$
$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$
$\therefore R H S=(A \times B) \cap(A \times C)=\varnothing$
$\therefore L.H.S.=R.H.S.$
Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$
बतलाइए कि निम्नलिखित कथनों में से प्रत्येक सत्य है अथवा असत्य है। यदि कथन असत्य है, तो दिए गए कथन को सही बना कर लिखिए।
यदि $A$ और $B$ अरिक्त समुच्चय हैं, तो $A \times B$ क्रमित युग्मों $(x, y)$ का एक अरिक्त समुच्चय है, इस प्रकार कि $x \in A$ तथा $y \in B$.
बतलाइए कि निम्नलिखित कथनों में से प्रत्येक सत्य है अथवा असत्य है। यदि कथन असत्य है, तो दिए गए कथन को सही बना कर लिखिए।
यदि $A =\{1,2\}, B =\{3,4\},$ तो $A \times( B \cap \phi)=\phi .$
मान लीजिए कि $A =\{1,2,3\}, B =\{3,4\}$ और $C =\{4,5,6\} .$ निम्नलिखित ज्ञात कीजिए
$(A \times B) \cap(A \times C)$
यदि $A =\{-1,1\},$ तो $A \times A \times A$ ज्ञात कीजिए।
यदि $ A, B$ तथा $C $ तीन समुच्चय हैं, तब $A × (B \cap C) $ बराबर है