मान लीजिए कि $A =\{1,2\}, B =\{1,2,3,4\}, C =\{5,6\}$ तथा $D =\{5,6,7,8\} .$ सत्यापित कीजिए कि

$A \times(B \cap C)=(A \times B) \cap(A \times C)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

To verify: $A \times(B \cap C)=(A \times B) \cap(A \times C)$

We have $B \cap C=\{1,2,3,4\} \cap\{5,6\}=\varnothing$

$\therefore \mathrm{L .H. S .}=A \times(B \cap C)=A \times \varnothing=\varnothing$

$A \times B=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$

$A \times C=\{(1,5),(1,6),(2,5),(2,6)\}$

$\therefore R H S=(A \times B) \cap(A \times C)=\varnothing$

$\therefore L.H.S.=R.H.S.$

Hence, $A \times(B \cap C)=(A \times B) \cap(A \times C)$

Similar Questions

मान लीजिए कि $A$ और $B$ दो समुच्चय हैं, जहाँ $n( A )=3$ और $n( B )=2 .$ यदि $(x, 1),$ $(y, 2),(z, 1), A \times B$ में हैं, तो $A$ और $B ,$ को ज्ञात कीजिए, जहाँ $x, y$ और $=$ भिन्न-भिन्न अवयव हैं।

यदि $R$ समस्त वास्तविक संख्याओं का समुच्चय है, तो कार्तीय गुणन $R \times R$ और $R \times R \times R$ क्या निरूपित करते हैं ?

माना बिंदु $(-1,0)$ से होकर जाने वाला तथा रेखा $y=x$ को $(1,1)$ पर स्पर्श करने वाला द्विघातीय वक्र $\mathrm{y}=\mathrm{f}(\mathrm{x})$ है, तो प्रथम चतुर्थांश में बिंदु $(\alpha, \alpha+1)$ पर वक्र के अभिलंब का $\mathrm{x}$-अंतःखंड है :

यदि $A, B $ तथा $C$ तीन समुच्चय हैं, तब $A × (B \cup C) $ बराबर है

कार्तीय गुणन $A \times A$ में $9$ अवयव हैं, जिनमें $(-1,0)$ तथा $(0,1)$ भी है। समुच्चय $A$ ज्ञात कीजिए तथा $A \times A$ के शेष अवयव भी ज्ञात कीजिए।