If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find
$B \cap D$
$A = \{ x:x$ is a natural number $\} = \{ 1,2,3,4,5 \ldots \} $
$B = \{ x:x$ is an even natural number $\} = \{ 2,4,6,8 \ldots \} $
$C = \{ x:x$ is an odd natural number $\} = \{ 1,3,5,7,9 \ldots \} $
$D = \{ x:x$ is a primenumber $\} = \{ 2,3,5,7 \ldots \}$
$B \cap D=\{2\}$
Which of the following pairs of sets are disjoint
$\{a, e, i, o, u\}$ and $\{c, d, e, f\}$
If $A = \{2, 3, 4, 8, 10\}, B = \{3, 4, 5, 10, 12\}, C = \{4, 5, 6, 12, 14\}$ then $(A \cap B) \cup (A \cap C)$ is equal to
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup C$
If $A=\{3,6,9,12,15,18,21\}, B=\{4,8,12,16,20\},$ $C=\{2,4,6,8,10,12,14,16\}, D=\{5,10,15,20\} ;$ find
$D-C$
Let $A, B$ and $C$ be sets such that $\phi \ne A \cap B \subseteq C$. Then which of the following statements is not true ?