यदि $X$ और $Y$ दो ऐसे समुच्चय हैं कि $X \cup Y$ में $50$ अवयव हैं, $X$ मे $28$ अवयव हैं और $Y$ में $32$ अवयव हैं, तो $X \cap Y$ में कितने अवयव हैं ?
Given that
$n( X \cup Y )=50, n( X )=28, n( Y )=32$
$n( X \cap Y )=?$
By using the formula
$n( X \cup Y )=n( X )+n( Y )-n( X \cap Y ),$
we find that
$ n( X \cap Y ) =n( X )+n( Y )-n( X \cup Y ) $
$=28+32-50=10 $
Alternatively, suppose $n( X \cap Y )=k,$ then
$n( X - Y )=28-k, n( Y - X )=32-k$ (by Venn diagram in Fig )
This gives $50=n( X \cup Y )=n( X - Y )+n( X \cap Y )+n( Y - X )$
$=(28-k)+k+(32-k)$
Hence $k=10$
यदि $A =\{3,6,9,12,15,18,21\}, B =\{4,8,12,16,20\}$ $C =\{2,4,6,8,10,12,14,16\}, D =\{5,10,15,20\} ;$ तो निम्नलिखित को ज्ञात कीजिए
$A-D$
यदि $A =\{3,5,7,9,11\}, B =\{7,9,11,13\}, C =\{11,13,15\}$ और $D =\{15,17\} ;$ तो निम्नलिखित जात कीजिए
$(A \cup D) \cap(B \cup C)$
यदि $A =\{x: x$ एक प्राकृत संख्या है $\},B =\{x: x$ एक सम प्राकृत संख्या है $\}$ $C =\{x: x$ एक विषम प्राकृत संख्या है $\}$ $D =\{x: x$ एक अभाज्य संख्या है $\}$ तो निम्नलिखित ज्ञात कीजिए
$A \cap B$
यदि $X =\{a, b, c, d\}$ और $Y =\{f, b, d, g\},$ तो निम्नलिखित को ज्ञात कीजिए
$X-Y$
यदि $A =\{x: x$ एक प्राकृत संख्या है $\},B =\{x: x$ एक सम प्राकृत संख्या है $\}$ $C =\{x: x$ एक विषम प्राकृत संख्या है $\}$ $D =\{x: x$ एक अभाज्य संख्या है $\}$ तो निम्नलिखित ज्ञात कीजिए
$C \cap D$