यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।
It is given that $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.$
$\therefore b\left(\frac{1}{c}+\frac{1}{a}\right)-a\left(\frac{1}{b}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)-b\left(\frac{1}{c}+\frac{1}{a}\right)$
$\Rightarrow \frac{b(a+c)}{a c}-\frac{a(b+c)}{b c}=\frac{c(a+b)}{a b}-\frac{b(a+c)}{a c}$
$\Rightarrow \frac{b^{2} a+b^{2} c-a^{2} b-a^{2} c}{a b c}=\frac{c^{2} a+c^{2} b-b^{2} a-b^{2} c}{a b c}$
$\Rightarrow b^{2} a-a^{2} b+b^{2} c-a^{2} c=c^{2} a-b^{2} a+c^{2} b-b^{2} c$
$\Rightarrow a b(b-a)+c\left(b^{2}-a^{2}\right)=a\left(c^{2}-b^{2}\right)+b c(c-b)$
$\Rightarrow a b(b-a)+c(b-a)(b+a)=a(c-b)(c+b)+b c(c-b)$
$\Rightarrow(b-a)(a b+c b+c a)=(c-b)(a c+a b+b c)$
$\Rightarrow b-a=c-b$
Thus, $a, b$ and $c$ are in $A.P.$
यदि किसी समान्तर श्रेणी के $n$ पदों का योग $2{n^2} + 5n$ हो, तो $n$ वाँ पद होगा
दर्शाइए कि किसी समांतर श्रेणी के $(m+n)$ वें तथा $(m-n)$ वें पदों का योग $m$ वें पद का दुगुना है।
यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ होंगे
$1$ व $100$ के बीच $3$ के गुणज वाली प्राकृत संख्याओं का योग है
माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$ $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.