यदि $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि $a, b, c$ समांतर श्रेणी में हैं।
It is given that $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.$
$\therefore b\left(\frac{1}{c}+\frac{1}{a}\right)-a\left(\frac{1}{b}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)-b\left(\frac{1}{c}+\frac{1}{a}\right)$
$\Rightarrow \frac{b(a+c)}{a c}-\frac{a(b+c)}{b c}=\frac{c(a+b)}{a b}-\frac{b(a+c)}{a c}$
$\Rightarrow \frac{b^{2} a+b^{2} c-a^{2} b-a^{2} c}{a b c}=\frac{c^{2} a+c^{2} b-b^{2} a-b^{2} c}{a b c}$
$\Rightarrow b^{2} a-a^{2} b+b^{2} c-a^{2} c=c^{2} a-b^{2} a+c^{2} b-b^{2} c$
$\Rightarrow a b(b-a)+c\left(b^{2}-a^{2}\right)=a\left(c^{2}-b^{2}\right)+b c(c-b)$
$\Rightarrow a b(b-a)+c(b-a)(b+a)=a(c-b)(c+b)+b c(c-b)$
$\Rightarrow(b-a)(a b+c b+c a)=(c-b)(a c+a b+b c)$
$\Rightarrow b-a=c-b$
Thus, $a, b$ and $c$ are in $A.P.$
$2$ तथा $38$ के बीच $n$ समांतर माध्यों को रखने पर परिणामी श्रेणी का योगफल $200$ है, तब $n$ का मान है
यदि ${a_1},\;{a_2},\;{a_3}.......{a_n}$ स.श्रे. में हों,(जहाँ $i$ के सभी मानों के लिये ${a_i} > 0$), तब $\frac{1}{{\sqrt {{a_1}} + \sqrt {{a_2}} }} + \frac{1}{{\sqrt {{a_2}} + \sqrt {{a_3}} }} + $$........ + \frac{1}{{\sqrt {{a_{n - 1}}} + \sqrt {{a_n}} }}$ का मान होगा
यदि किसी समकोण त्रिभुज की भुजायें समान्तर श्रेणी में हों, तो भुजायें समानुपाती होंगी
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=a_{2}=2, a_{n}=a_{n-1}-1,$ जहाँ $n>2$
यदि एक समान्तर श्रेणी का $10^{\text {th }}$ वां पद $\frac{1}{20}$ है तथा इसका $20^{\text {th }}$ वां पद $\frac{1}{10}$ है, तो इसके प्रथम $200$ पदों का योग है