- Home
- Standard 12
- Mathematics
यदि $R=\left\{(x, y): x, y \in Z , x^{2}+3 y^{2} \leq 8\right\}$ पूर्णांक $Z$ के समुच्चय का संबंध है तो $R^{-1}$ का प्रक्षेत्र है
$\{-2,-1,1,2\}$
$\{-1,0,1\}$
$\{-2,-1,0,1,2\}$
$\{0,1\}$
Solution

$R=\left\{(x, y): x, y \in z, x^{2}+3 y^{2} \leq 8\right\}$
For domain of $\mathrm{R}^{-1}$
Collection of all integral of y's
For $x=0, \quad 3 y^{2} \leq 8$
$\Rightarrow \mathrm{y} \in\{-1,0,1\}$
Similar Questions
माना कि $E_1=\left\{x \in R : x \neq 1\right.$ और $\left.\frac{x}{x-1}>0\right\}$
और $E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ एक वास्तविक संख्या (real number) है $\}$
(यहाँ प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric function) $\sin ^{-1} x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ में मान धारण करता है।)
माना कि फलन $f: E_1 \rightarrow R , f(x)=\log _e\left(\frac{x}{x-1}\right)$ के द्वारा परिभाषित है
और फलन $g: E_2 \rightarrow R , g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$ के द्वारा परिभाषित है।
सूची $I$ | सूची $II$ |
$P$ $f$ का परिसर (range) है | $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$ |
$Q$ $g$ के परिसर में समाहित (contained) है | $2$ $(0,1)$ |
$R$ $f$ के प्रान्त (domain) में समाहित है | $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$ |
$S$ $g$ का प्रान्त है | $4$ $(-\infty, 0) \cup(0, \infty)$ |
$5$ $\left(-\infty, \frac{ e }{ e -1}\right]$ | |
$6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$ |
दिए हुए विकल्पों मे से सही विकल्प है: