यदि $\cot \theta=\frac{7}{8},$ तो
$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)},$
$(ii)$ $\cot ^{2} \theta$ का मान निकालिए?
Let us consider a right triangle $ABC ,$ right-angled at point $B$.
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{B C}{A B}$
$=\frac{7}{8}$
If $B C$ is $7 k,$ then $A B$ will be $8 k,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$=(8\, k)^{2}+(7\, k)^{2}$
$=64\, k^{2}+49\, k^{2}$
$=113 \,k^{2}$
$A C=\sqrt{113 k}$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{A B}{A C}$
$=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}}$
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{B C}{A C}$
$=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}}$
$\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1-\sin ^{2} \theta\right)}{\left(1-\cos ^{2} \theta\right)}$
$(i)$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
$=\frac{\frac{49}{113}}{\frac{64}{113}}=\frac{49}{64}$
$(ii)$ $\cot ^{2} \theta=(\cot \theta)^{2}=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$
यदि $\sec 4 A =\operatorname{cosec}\left( A -20^{\circ}\right),$ जहाँ $4 A$ एक न्यून कोण है, तो $A$ का मान ज्ञात कीजिए।
$\Delta PQR$ में, जिसका कोण $Q$ समकोण है $($ देखिए आकृति $), PQ =3 \,cm$ और $PR =6\, cm$ है। $\angle QPR$ और $\angle PRQ$ ज्ञात कीजिए।
निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
$\Delta PQR$ में, जिसका कोण $Q$ समकोण है, $PR + QR =25 \,cm$ और $PQ =5 \,cm$ है। $\sin P , \cos P$ और $\tan P$ के मान ज्ञात कीजिए।
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$