सिद्ध कीजिए कि $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$LHS =\frac{\cot A -\cos A }{\cot A +\cos A }=\frac{\frac{\cos A }{\sin A }-\cos A }{\frac{\cos A }{\sin A }+\cos A }$

$=\frac{\cos A\left(\frac{1}{\sin A}-1\right)}{\cos A\left(\frac{1}{\sin A}+1\right)}=\frac{\left(\frac{1}{\sin A}-1\right)}{\left(\frac{1}{\sin A}+1\right)}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}=R H S$

Similar Questions

यदि $\angle A$ और $\angle B$ न्यून कोण हो, जहाँ $\cos A =\cos B ,$ तो दिखाइए कि $\angle A =\angle B$

$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

$\angle A$ के अन्य सभी त्रिकोणमितीय अनुपातों को $sec A$ के पदों में लिखिए।

निम्नलिखित का मान निकालिए:

$\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$

दिखाइए कि

$(i)$ $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$

$(ii)$ $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$