$\Delta ABC$ में, जिसका कोण $B$ समकोण है , $AB =24\, cm$ और $BC =7\, cm$ है। निम्नलिखित का मान ज्ञात कीजिए :

$(i)$ $\sin A , \cos A$

$(ii)$ $\sin C, \cos C$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Applying Pythagoras theorem for $\triangle ABC ,$ we obtain

$A C^{2}=A B^{2}+B C^{2}$

$=(24\, cm )^{2}+(7\, cm )^{2}$

$=(576+49) \,cm ^{2}$

$=625\, cm ^{2}$

$\therefore A C=\sqrt{625} cm =25\, cm$

$(i)\,\sin A\frac{\text { Side opposite to } \angle A }{\text { Hypotenuse }}=\frac{ BC }{ AC }$

$=\frac{7}{25}$

$\cos A=\frac{\text { Side adjacent to } \angle A }{\text { Hypotenuse }}=\frac{ AB }{ AC}$$=\frac{24}{25}$

$(ii)$

$\sin C=\frac{\text { Side opposite to } \angle C }{\text { Hypotenuse }}=\frac{A B}{A C}$

$=\frac{24}{25}$

$\cos C=\frac{\text { Side adjacent to } \angle C}{\text { Hypotenuse }}=\frac{B C}{A C}$

$=\frac{7}{25}$

1043-s6

Similar Questions

एक समकोण त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =1$ तो सत्यापित कीजिए कि $2 \sin A \cos A=1$

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

$\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$