$\Delta ABC$ में जिसका कोण $B$ समकोण है, $AB =5 \,cm$ और $\angle ACB =30^{\circ}($ देखिए आकृति $)$ भुजाओं $BC$ और $AC$ की लंबाइयाँ ज्ञात करें।
To find the length of the side $BC ,$ we will choose the trigonometric ratio involving $BC$ and the given side $AB$. since $BC$ is the side adjacent to angle $C$ and $AB$ is the side opposite to angle $C ,$ therefore
$\frac{ AB }{ BC }=\tan C$
$\frac{5}{ BC }=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$
which gives $BC =5 \sqrt{3} \,cm$
To find the length of the side $AC ,$ we consider
$\sin 30^{\circ}=\frac{ AB }{ AC }$
$\frac{1}{2}=\frac{5}{ AC }$
$AC =10 \,cm$
Note that alternatively we could have used Pythagoras theorem to determine the third side in the example above,
$AC =\sqrt{ AB ^{2}+ BC ^{2}}=\sqrt{5^{2}+(5 \sqrt{3})^{2}} cm =10 \,cm$
मान निकालिए :
$\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
$\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
निम्नलिखित के मान निकालिए :
$\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
त्रिभुज $ABC$ में, जिसका कोण $B$ समकोण है, यदि $\tan A =\frac{1}{\sqrt{3}}$, तो निम्नलिखित के मान ज्ञात कीजिए:
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$