If $P$ and $Q$ are two statements, then which of the following compound statement is a tautology?
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow Q$
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow \sim P$
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow P$
$(( P \Rightarrow Q ) \wedge \sim Q ) \Rightarrow( P \wedge Q )$
If $(p \wedge \sim q) \wedge r \to \sim r$ is $F$ then truth value of $'r'$ is :-
$\sim (p \vee q) \vee (~ p \wedge q)$ is logically equivalent to
Negation of the statement $(p \vee r) \Rightarrow(q \vee r)$ is :
Let $p$ and $q$ be any two logical statements and $r:p \to \left( { \sim p \vee q} \right)$. If $r$ has a truth value $F$, then the truth values of $p$ and $q$ are respectively
The Statement that is $TRUE$ among the following is