${(1 + x - 3{x^2})^{3148}}$ ના સહગુણકનો સરવાળો મેળવો.
$7$
$8$
$-1$
$1$
$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)=$ . . .
${(1 + x - 3{x^2})^{2163}}$ વિસ્તરણમાં સહગુણકોનો સરવાળો મેળવો.
જો ${(1 + x + {x^2})^n}$ ના વિસ્તરણમાં ${a_r}$ એ ${x^r}$ નો સહગુણક દર્શાવે છે ,તો ${a_1} - 2{a_2} + 3{a_3} - .... - 2n\,{a_{2n}} = $
$\sum\limits_{k = 0}^{10} {^{20}{C_k} = } $
જો બધા ધન પૂર્ણાંક $r> 1, n > 2$ માટે $( 1 + x)^{2n}$ ના વિસ્તરણમાં $x$ ની ઘાત $(3r)$ અને $(r + 2)$ ના સહગુણક સરખા હોય તો $n$ ની કિમત મેળવો.