यदि $n \geq 2$ एक धनात्मक पूर्णाक है, तो श्रेणी ${ }^{n+1} C _{2}+2\left({ }^{2} C _{2}+{ }^{3} C _{2}+{ }^{4} C _{2}+\ldots+{ }^{2} C _{2}\right)$ का योग है
$\frac{ n ( n -1)(2 n +1)}{6}$
$\frac{ n ( n +1)(2 n +1)}{6}$
$\frac{ n (2 n +1)(3 n +1)}{6}$
$\frac{ n ( n +1)^{2}( n +2)}{12}$
यदि $^n{C_r} = {\,^n}{C_{r - 1}}$ और $^n{P_r}{ = ^n}{P_{r + 1}}$, तो $n$ का मान है
मान लीजिए कि
$S _1=\{( i , j , k ): i , j , k \in\{1,2, \ldots, 10\}\}$
$S _2=\{( i , j ): 1 \leq i < j +2 \leq 10, i , j \in\{1,2, \ldots, 10\}\},$
$S _3=\{( i , j , k , l): 1 \leq i < j < k < l, i , j , k , l \in\{1,2, \ldots ., 10\}\}$
और $S _4=\{( i , j , k , l): i , j , k$ और $l\{1,2, \ldots, 10\}$ में भिन्न (distinct) अवयवों (elements) है $\}$
यदि $r =1,2,3,4$ के लिए समुच्चय $S _{ r }$ में कुल अवयवों की संख्या $n _{ r }$ है, तब निम्न कथनों में से कौन सा (से) सत्य है (हैं) ?
$(A)$ $n _1=1000$ $(B)$ $n _2=44$ $(C)$ $n _3=220$ $(D)$ $\frac{ n _4}{12}=420$
ताश के $52$ पत्तों को चार व्यक्तियों में कितने प्रकार से बॉटा जा सकता है ताकि तीन व्यक्तियों में प्रत्येक के पास $17$ पत्ते हों और चौथे के पास केवल एक पत्ता हो
यदि $2 \times {}^n{C_5} = 9\,\, \times \,\,{}^{n - 2}{C_5}$ हो, तो $n$ का मान होगा
$52$ ताशों की एक गड्डी से $4$ पत्तों को चुनने के तरीकों की संख्या क्या है ? इन तरीकों में से कितनों में से कितनों में
चार पत्ते चार, भिन्न प्रकार $(suit)$ के हैं ?