यदि $(1+ x )^{20}$ के प्रसार में $x ^{ r }$ का गुणांक ${ }^{20} C _{ I }$ है, तो $\sum_{ r =0}^{20} I ^{2}{ }^{20} C _{ I }$ का मान बराबर है.....।

  • [JEE MAIN 2021]
  • A

    $420 \times 2^{19}$

  • B

    $380 \times 2^{19}$

  • C

    $380 \times 2^{18}$

  • D

    $420 \times 2^{18}$

Similar Questions

यदि $b , a$ से बहुत छोटा है, जिनके लिए निम्न सर्वसमिका

$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ में, $\frac{ b }{ a }$ की क्यूब और ऊँची घातों की उपेक्षा की जा सकती है, तो $\gamma$ बराबर है 

  • [JEE MAIN 2021]

यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............ 

  • [JEE MAIN 2024]

यदि  ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}}$ हो, तब ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}}$ का मान है

  • [IIT 1966]

माना $\alpha=\sum_{k=0}^{\mathrm{n}}\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ तथा $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$ हैं। यदि $5 \alpha=6 \beta$ हैं, तो $\mathrm{n}$ बराबर है ............

  • [JEE MAIN 2024]

यदि ${(1 - x + {x^2})^n} = {a_0} + {a_1}x + {a_2}{x^2} + .... + {a_{2n}}{x^{2n}}$, तो ${a_0} + {a_2} + {a_4} + .... + {a_{2n}}$ बराबर है