If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $[1,3]$
$[1,3]$ and $[1,3]$
$[1,3]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
The equation of the ellipse referred to its axes as the axes of coordinates with latus rectum of length $4$ and distance between foci $4 \sqrt 2$ is-
The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity
If the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide, then the value of ${b^2}$ is
For the ellipse $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ the eccentricity $e = $
Let $'E'$ be the ellipse $\frac{{{x^2}}}{9}$$+$$\frac{{{y^2}}}{4}$ $= 1$ $\& $ $'C' $ be the circle $x^2 + y^2 = 9.$ Let $P$ $\&$ $Q$ be the points $(1 , 2) $ and $(2, 1)$ respectively. Then :