If $x^{2}+9 y^{2}-4 x+3=0, x, y \in R$, then $x$ and $y$ respectively lie in the intervals:
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
$\left[-\frac{1}{3}, \frac{1}{3}\right]$ and $[1,3]$
$[1,3]$ and $[1,3]$
$[1,3]$ and $\left[-\frac{1}{3}, \frac{1}{3}\right]$
Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
Let $f(x)=x^2+9, g(x)=\frac{x}{x-9}$ and $\mathrm{a}=\mathrm{fog}(10), \mathrm{b}=\operatorname{gof}(3)$. If $\mathrm{e}$ and $1$ denote the eccentricity and the length of the latus rectum of the ellipse $\frac{x^2}{a}+\frac{y^2}{b}=1$, then $8 e^2+1^2$ is equal to.
Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ be an ellipse, whose eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is $\sqrt{14}$. Then the square of the eccentricity of $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is :
If the centre, one of the foci and semi-major axis of an ellipse be $(0, 0), (0, 3)$ and $5$ then its equation is
The locus of mid points of parts in between axes and tangents of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ will be