જો $\alpha, \beta$ એ સમીકરણ $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ ના બીજ છે અને દરેક ધન પૃણાંક $n$ માટે $P_{n}=\alpha^{n}-\beta^{n}$ હોય તો $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ ની કિમંત મેળવો.
$4$
$3$
$2$
$1$
સમીકરણ $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ નો ઉકેલ મેળવો
જો $x$ એ વાસ્તવિક હોય તો સમીકરણ $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ ની કિંમતોનો ગણ મેળવો.
જો ${\rm{x}}$ વાસ્તવિક હોય , તો $\,\frac{{3{x^2} + \,9x\, + \,17}}{{3{x^2}\, + \,9x\, + \,7}}$ નું મહતમ મૂલ્ય કેટલું થાય ?
સમીકરણ $x_1 + x_2 = 100$ ના પ્રાકૃતિક ઉકેલોની સંખ્યા મેળવો કે જેથી $x_1$ અને $x_2$ એ $5$ નો ગુણક ના હોય
$'K'$ ની કેટલી ધન પૂર્ણાક કિમતો મળે કે જેથી સમીકરણ $k = \left| {x + \left| {2x - 1} \right|} \right| - \left| {x - \left| {2x - 1} \right|} \right|$ ને બરાબર ત્રણ વાસ્તવિક ઉકેલો મળે છે ?