यदि समीकरण, $x ^{2}+5(\sqrt{2}) x +10=0$, के $\alpha$ तथा $\beta$, $\alpha>\beta$ दो मूल है तथा $P_{n}=\alpha^{n}-\beta^{n}$,( प्रत्येक धन पूर्णांक $n$ के लिए) है, तो $\left(\frac{ P _{17} P _{20}+5 \sqrt{2} P _{17} P _{19}}{ P _{18} P _{19}+5 \sqrt{2} P _{18}^{2}}\right)$ का मान है ............. |
$4$
$3$
$2$
$1$
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$
माना $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $ तो $y$ के वास्तविक मानों के लिये $x$ है
समीकरण $x^4-3 x^3-2 x^2+3 x+1=10$ के सभी मूलों के घनों का योगफल है
समीकरण $x|x|-5|x+2|+6=0$ के वास्तविक मूलों की संख्या है :
समीकरण $x^2+y^2=a^2+b^2+c^2$, यहाँ $x, y, a, b, c$ सभी अभाज्य संख्याएँ हैं, के कितने हल हैं?