4-2.Quadratic Equations and Inequations
normal

यदि समीकरण, $x ^{2}+5(\sqrt{2}) x +10=0$, के $\alpha$ तथा $\beta$, $\alpha>\beta$ दो मूल है तथा $P_{n}=\alpha^{n}-\beta^{n}$,( प्रत्येक धन पूर्णांक $n$ के लिए) है, तो $\left(\frac{ P _{17} P _{20}+5 \sqrt{2} P _{17} P _{19}}{ P _{18} P _{19}+5 \sqrt{2} P _{18}^{2}}\right)$ का मान है ............. |

A

$4$

B

$3$

C

$2$

D

$1$

(JEE MAIN-2021)

Solution

$x^{2}+5 \sqrt{2} x+10=0$

$\& p_{n}=\alpha^{n}-\beta^{n} \text { (Given) }$

$\text { Now } \frac{P_{17} P_{20}+5 \sqrt{2} p_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}=\frac{P_{17}\left(P_{20} 5 \sqrt{2} P_{19}\right)}{P_{18}\left(P_{19}+5 \sqrt{2 P}_{18}\right)}$

$\frac{P_{17}\left(\alpha^{20}-\beta^{20}+5 \sqrt{2}\left(\alpha^{19}-\beta^{19}\right)\right)}{P_{18}\left(\alpha^{19}-\beta^{19}+5 \sqrt{2}\left(\alpha^{18}-\beta^{18}\right)\right)}$

$\frac{P_{17}\left(\alpha^{19}(\alpha+5 \sqrt{2})-\beta^{19}(\beta+5 \sqrt{2})\right)}{P_{18}\left(\alpha^{18}(\alpha+5 \sqrt{2})-\beta^{18}(\beta+5 \sqrt{2})\right)}$

$\text { Since } \alpha+5 \sqrt{2}=-10 / \alpha \ldots \ldots \ldots \ldots . .(1)$

$\&\, \beta+5 \sqrt{2}=-10 / \beta \ldots \ldots \ldots \ldots(2)$

Now put there values in above expression

$=-\frac{10 P_{1} P_{18}}{-10 P_{18} P_{17}}=1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.