Let $a$ ,$b$, $c$ , $d$ , $e$ be five numbers satisfying the system of equations

                            $2a + b + c + d + e = 6$
                            $a + 2b + c + d + e = 12$
                            $a + b + 2c + d + e = 24$
                            $a + b + c + 2d + e = 48$
                            $a + b + c + d + 2e = 96$ ,

then $|c|$ is equal to 

  • A

    $6$

  • B

    $7$

  • C

    $8$

  • D

    $25$

Similar Questions

The number of solutions, of the equation $\mathrm{e}^{\sin x}-2 e^{-\sin x}=2$ is

  • [JEE MAIN 2024]

Let $a, b, c$ be the length of three sides of a triangle satisfying the condition $\left(a^2+b^2\right) x^2-2 b(a+c)$. $x+\left(b^2+c^2\right)=0$. If the set of all possible values of $x$ is the interval $(\alpha, \beta)$, then $12\left(\alpha^2+\beta^2\right)$ is equal to............................

  • [JEE MAIN 2024]

Let $a, b, c, d$ be real numbers such that $|a-b|=2$, $|b-c|=3,|c-d|=4$. Then, the sum of all possible values of $|a-d|$ is

  • [KVPY 2011]

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

For a real number $x$, let $[x]$ denote the largest integer less than or equal to $x$, and let $\{x\}=x-[x]$. The number of solutions $x$ to the equation $[x]\{x\}=5$ with $0 \leq x \leq 2015$ is

  • [KVPY 2015]