8. Sequences and Series
hard

यदि $\tan \left(\frac{\pi}{9}\right), x , \tan \left(\frac{7\pi}{18}\right)$ एक समांतर श्रेढ़ी में हैं तथा $\tan \left(\frac{\pi}{9}\right), y , \tan \left(\frac{5 \pi}{18}\right)$ भी एक समांतर श्रेढ़ी में हैं. तो $| x -2 y |$ बराबर है

A

$0$

B

$3$

C

$4$

D

$1$

(JEE MAIN-2021)

Solution

$x=\frac{1}{2}\left(\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}\right)$

and $2 y=\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}$

so, $x-2 y=\frac{1}{2}\left(\tan \frac{\pi}{9}+\tan \frac{7 \pi}{18}\right)$

$-\left(\tan \frac{\pi}{9}+\tan \frac{5 \pi}{18}\right)$

$\Rightarrow|x-2 y|=\left|\frac{\cot \frac{\pi}{9}-\tan \frac{\pi}{9}}{2}-\tan \frac{5 \pi}{18}\right|$

$=\left|\cot \frac{2 \pi}{9}-\cot \frac{2 \pi}{9}\right|=0$

$\left(\operatorname{as\,\,\,\,tan} \frac{5 \pi}{18}=\cot \frac{2 \pi}{9} ; \tan \frac{7 \pi}{18}=\cot \frac{\pi}{9}\right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.