प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष के अंत्य बिंदु $(\pm 3,0),$ लघु अक्ष के अंत्य बिंदु $(0,±2)$
Ends of major axis $(±3,\,0)$ , ends of minor axis $(0,\,±2)$
Here, the major axis is along the $x-$ axis.
Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semi major axis.
Accordingly, $a=3$ and $b=2$
Thus, the equation of the ellipse is $\frac{x^{2}}{3^{2}}+\frac{y^{2}}{2^{2}}=1$ or $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
दीर्घवृत (ellipse) $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर विचार कीजिये। माना कि $S(p, q)$ प्रथम चतुर्थांश (first quadrant) में एक इस प्रकार का बिंदु है कि $\frac{p^2}{9}+\frac{q^2}{4}>1$ है । बिंदु $S$ से दीर्घवृत के लिए दो स्पर्श रेखाएं (tangents) खींची गयी हैं, जिनमें से एक रेखा, दीर्घवृत पर लघु अक्ष (minor axis) के एक अंत्य बिंदु (end point) पर मिलती है तथा दूसरी रेखा चौथे चतुर्थांश (fourth quadrant) में दीर्घवृत के एक बिंदु $T$ पर मिलती है। माना कि $R$ दीर्घवृत का वह शीर्ष (vertex) है जिसका $x$-निर्देशांक ( $x$-coordinate) धनात्मक (positive) है, और दीर्घवृत का केंद्र $O$ है। यदि त्रिभुज $\triangle O R T$ का क्षेत्रफल $\frac{3}{2}$ है, तब निम्नलिखित विकल्पों में से कौन सा सही है?
दीर्घवृत्त $4{x^2} + 9{y^2} = 1$ पर वे बिन्दु, जहाँ पर इसकी स्पर्श रेखाएँ, रेखा $8x = 9y$ के समान्तर हैं, है
यदि अतिपरवलय ${x^2} - {y^2} = 9$ की एक स्पर्श जीवा $x = 9$ है, तो सम्बन्धित युगल स्पर्श रेखा $(Pair\,\, of\,\, tangents)$ का समीकरण है
यदि रेखा, $x -2 y =12$ दीर्घवृत्त, $\frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1$ को बिन्दु $\left(3, \frac{-9}{2}\right)$ पर स्पर्श करती है, तो इसके नाभिलम्ब की लम्बाई है
$\frac{|x|}{2}+\frac{|y|}{3}=1$ के बाहर और दीर्घवृत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के अंदर के क्षेत्र का क्षेत्रफल (वर्ग इकाई में) है