જો $a_{1}, a_{2} \ldots, a_{n}$ એ એક સમાંતર શ્રેણી આપેલ છે કે જેનો સામાન્ય તફાવત પૂર્ણાક હોય અને $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ થાય તથા If $a_{1}=1, a_{n}=300$ અને $15 \leq n \leq 50,$હોય તો $\left( S _{ n -4}, a _{ n -4}\right)$ ની કિમત મેળવો 

  • [JEE MAIN 2020]
  • A

    $(2480,249)$

  • B

    $(2490,249)$

  • C

    $(2490,248)$

  • D

    $(2480,248)$

Similar Questions

જો સમાંતર શ્રેણી નું $p$  મું, $q$  મું , $r$  મું પદ અનુક્રમે  $1/a, 1/b, 1/c$   હોય તો $ab(p - q) + bc(q - r) + ca(r - p) = …….$ 

$1.3.5, 3.5.7, 5.7.9, ...... $ શ્રેણીના પ્રથમ $n$ પદોનો સમાંતર મધ્યક કેટલો થાય ?

એક સમાંતર શ્રેણીનાં પ્રથમ $m$ અને $n$ પદોના સરવાળાના ગુણોત્તર $m^{2}: n^{2}$ છે. સાબિત કરો કે $m$ માં તથા $n$ માં પદોનો ગુણોત્તર $(2 m-1):(2 n-1)$ થાય. 

અહી $x_n, y_n, z_n, w_n$ એ ધન પદો ધરાવતી ભિન્ન સમાંતર શ્રેણીના $n^{th}$ પદો છે જો $x_4 + y_4 + z_4 + w_4 = 8$ અને $x_{10} + y_{10} + z_{10} + w_{10} = 20,$ હોય તો  $x_{20}.y_{20}.z_{20}.w_{20}$ ની મહત્તમ કિમત મેળવો 

જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?

  • [JEE MAIN 2019]