જો $a_{1}, a_{2} \ldots, a_{n}$ એ એક સમાંતર શ્રેણી આપેલ છે કે જેનો સામાન્ય તફાવત પૂર્ણાક હોય અને $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ થાય તથા If $a_{1}=1, a_{n}=300$ અને $15 \leq n \leq 50,$હોય તો $\left( S _{ n -4}, a _{ n -4}\right)$ ની કિમત મેળવો 

  • [JEE MAIN 2020]
  • A

    $(2480,249)$

  • B

    $(2490,249)$

  • C

    $(2490,248)$

  • D

    $(2480,248)$

Similar Questions

સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો  $b _{1}$ ની કિમત શોધો.

  • [JEE MAIN 2020]

જો $x, y, z$ સમાંતર શ્રેણીમાં હોય અને $x$ અને $y$ સમાંતર મધ્યક $a$ હોય તો તથા $y$ અને $z$ નો સમાંતર મધ્યક $b$ હોય તો $a$ અને $b$ વચ્ચેનો સમાંતર મધ્યક ?

સમાંતર શ્રેણી $a_1, a_2, a_3, ……$ ના પ્રથમ $n$ પદોનો સરવાળો $50\,n\, + \,\frac{{n\,(n\, - 7)}}{2}A$ છે.    જ્યાં $A$ અચળ છે જો $d$ સમાંતર શ્રેણીનો સામાન્ય તફાવત હોય તો $(d,a_{50})$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]

ધારોકે અંકો $a,b,c$ સમાંતર શ્રેણીમાં છે.આ ત્રણેય અંકોનો ત્રણ વાર ઉપયોગ કરીને $9-$અંકો વાળી એવી સંખ્યા બનાવવામાં આવે છે કે જેથી ત્રણ ક્રમિક અંકો ઓછામાં ઓછા એક વાર સમાંતર શ્રેણીમાં હોય.આ પ્રકારની કેટલી સંખ્યાઓ બનાવી શકાય છે?

  • [JEE MAIN 2023]

$7$ વડે ભાગાકાર કરી શકાય તેવી $100$ થી $300$ વચ્ચેની દરેક સંખ્યાનો સરવાળો કેટલો થશે ?