- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
જો $a$ અને $100$ ની વચ્ચે $n$ સમાંતર મધ્યકો મૂકવામાં આવે કે જેથી પ્રથમ મધ્યકનો અંતિમ મધ્યક સાથેનો ગુણોત્તર $1: 7$ અને $a + n =33$ થાય, તો $n$ ની કિમત ...............છે.
A
$21$
B
$22$
C
$23$
D
$24$
(JEE MAIN-2022)
Solution
$d =\frac{100- a }{ n +1}$
$A _{1}= a + d$
$A _{ n }=100- d$
$\Rightarrow \frac{ A _{1}}{ A _{ n }}=\frac{1}{7} \Rightarrow \frac{ a + d }{100- d }=\frac{1}{7}$
$\Rightarrow 7 a+8 d=100$
$\Rightarrow 7\, a +8\left(\frac{100- a }{ n +1}\right)=100$……..$(1)$
$\because a + n =33$………(2)
$Now,\,by\, Eq. (1) and (2)$
$7 n^{2}-132 n-667=0$
$n =23$ and $n =\frac{-29}{7}$ $reject.$
Standard 11
Mathematics