If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ જ્યાં $\alpha \in R$, હોય, તો $16 \alpha$ નું મૂલ્ય...........છે

  • [JEE MAIN 2022]
  • A

    $1411$

  • B

    $1320$

  • C

    $1615$

  • D

    $1855$

Similar Questions

જો ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ તો ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $

  • [IIT 1966]

$(1+ x )^{ n +2}$ ના દ્રીપદી વિસ્તરણમાં $1:3:5$ ગુણોત્તરમાં હોય તેવા ત્રણ ક્રમિક પદોના સહગુણકોનો સરવાળો $........$ થાય.

  • [JEE MAIN 2023]

$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$ 

વિસ્તરણમાં $\alpha ^t$ નો સહગુણક મેળવો.

જ્યાં $\alpha \ne - q$ અને $p \ne q$  

જો $x + y = 1$, તો $\sum\limits_{r = 0}^n {{r^2}{\,^n}{C_r}{x^r}{y^{n - r}}} $ = . . .

$(1-x)^{100}$ ના દ્વિપદી વિસ્તરણમાં પ્રથમ $50$ પદોના સહગુણકોનો સરવાળો $.......$ છે.

  • [JEE MAIN 2023]