$\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$ का मान है

  • A

    $\frac{{{2^n} - 1}}{{n + 1}}$

  • B

    $n{.2^n}$

  • C

    $\frac{{{2^n}}}{n}$

  • D

    $\frac{{{2^n} + 1}}{{n + 1}}$

Similar Questions

यदि $(1+ x )^{20}$ के प्रसार में $x ^{ r }$ का गुणांक ${ }^{20} C _{ I }$ है, तो $\sum_{ r =0}^{20} I ^{2}{ }^{20} C _{ I }$ का मान बराबर है.....।

  • [JEE MAIN 2021]

यदि ${a_k} = \frac{1}{{k(k + 1)}},$ जबकि $k = 1,\,2,\,3,\,4,.....,\,n$, तब ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $

माना $(1+\mathrm{x})^{99}$ के प्रसार में $\mathrm{x}$ की विषम घातो के गुणांको का योग $\mathrm{K}$ है। माना $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$ के प्रसार में मध्य पद $\mathrm{a}$ है। यदि $\frac{{ }^{200} \mathrm{C}_{99} \mathrm{~K}}{\mathrm{a}}=\frac{2^{\ell} \mathrm{m}}{\mathrm{n}}$, है। जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ विषम संख्याएँ हैं तो क्रमित युग्म $(\ell, \mathrm{n})$ बराबर है।

  • [JEE MAIN 2023]

${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ के विस्तार में ${x^r}[0 \le r \le (n - 1)]$ का गुणांक है

यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :

  • [JEE MAIN 2023]