ધારોકે $x_{1}, x_{2}, x_{3}, \ldots, x_{20}$ એ સમગુણોતર શ્રેણીમાં છે, જ્યાં $x_{1}=3$ અને સામાન્ય ગુણોત્તર $\frac{1}{2}$ છે. પ્રત્યેક $x_{i}$ ને $\left(x_{i}-i\right)^{2}$ વડે બદલી એક નવી માહિતી રચવામાં આવે છે. જો નવી માહિતીનો મધ્યક $\bar{x}$ હોય, તો $\bar{x}$ કે તેથી નાના તમામ પૂણાંકોમાં સૌથી મોટો પૂણાંક ............ છે.
$143$
$144$
$145$
$142$
સમગુણોત્તર શ્રેણી $3,3^{2}, 3^{3}$... નાં પ્રથમ કેટલાં પદોનો સરવાળો $120$ થાય ?
અનંત સમગુણોત્તર શ્રેણી સ્વીકારો તેનું પ્રથમ પદ $a $ અને સામાન્ય ગુણોત્તર $r$ છે. જો તેનો સરવાળો $4$ થાય અને બીજું પદ $3/4$ હોય, તો......
જો $x > 1,\;y > 1,z > 1$ એ સમગુણોતર શ્નેણીમાં હોયતો $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ એ _______ માં છે.
એક માણસને $2$ માતા-પિતા, $4$ દાદા-દાદી, $8$ વડદાદા-વડદાદી વગેરે છે તો તેની $10$ મી પેઢીએ રહેલ પૂર્વજોની સંખ્યા શોધો.
જો $25, x - 6$ અને $x - 12$ સમગુણોત્તર શ્રેણીનાં ક્રમિક પદો હોય, તો $x = ….$