यदि $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^9}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$ है, जहाँ $m$ एक विषम संख्या है, तो $m . n$ बराबर है $...............$
$15$
$14$
$13$
$12$
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
दो राशियों $a$ और $b$ के बीच $n$ गुणोत्तर माध्य स्थापित किये जाएँ, तो $n$ वाँ गुणोत्तर माध्य होगा
श्रेणी $0.7,0.77,0.777, \ldots \ldots$, के प्रथम $20$ पदों का योग है
यदि किसी अनन्त गुणोत्तर श्रेणी के पदों का योग व इसके पदों के वर्गो का योग $3$ हो, तो प्रथम श्रेणी का सार्व-अनुपात है