Gujarati
4-2.Quadratic Equations and Inequations
normal

समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :

A

$9-\sqrt{15}$

B

$3+\sqrt{15}$

C

$2+\sqrt{5}$

D

$6-\sqrt{5}$

(KVPY-2015)

Solution

(b)

We have,

$\log _{3 x-1}(x-2)$

$=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$

$\log _{(3 x-1)}(x-2)$

$=\log _{(3 x-1)^2}\left(2 x^2-10 x-2\right)$

$\log _{3 x-1}(x-2)$

$=\frac{1}{2} \log _{3 x-1}\left(2 x^2-10 x-2\right)(x-2)^2$

$(x-2)^2=2 x^2-10 x-2$

$x^2-4 x+4=2 x^2-10 x-2$

$x^2-6 x-6=0$

$x=3 \pm \sqrt{15}$

$x=3-\sqrt{15}, 3+\sqrt{15}$

$x=3-\sqrt{15} \Rightarrow x-2 < 0$

$x=3+\sqrt{15}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.