यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है
$49$
$98$
$147$
$294$
यदि $(x + 1)$ व्यंजक ${x^4} - (p - 3){x^3} - (3p - 5){x^2} + (2p - 7)x + 6$
का एक गुणनखण्ड हो, तो $p = $
मान लें कि $x, y$ दो अंकों वाली प्राकृत संख्याएँ हैं। संख्या $x$ के अंकों को उत्क्रमित $(reverse)$ करने पर संख्या $y$ प्राप्त होती हैं। यदि प्राकृत संख्या $m$ इस प्रकार है कि $x^2-y^2=m^2$ तो $x+y+m$ का मान होगा:
यदि $|x - 2| + |x - 3| = 7$, तब $x =$
समीकरण
$\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0 \text {, }$
$x > 0$ के हलों की संख्या है ..............
माना द्विघात समीकरण $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है