Gujarati
4-2.Quadratic Equations and Inequations
normal

यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है

A

$49$

B

$98$

C

$147$

D

$294$

(KVPY-2017)

Solution

(c)

We have, $a+b+c=0$ and $a^2+b^2+c^2=1$

Now $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2 +(5 a-8 b+3 c)^2$

$=9 a^2+25 b^2+64 c^2-48 a c+30 a b -80 b c+64 a^2+9 b^2+25 c^2-80 a c -48 a b+30 b c+25 a^2+64 b^2+9 c^2 +30 a c-8 a b-48 b c$

$=98\left(a^2+b^2+c^2\right)-98(a b+b c+c a)$

$=98\left(a^2+b^2+c^2\right) -98\left(\frac{(a+b+c)^2-\left(a^2+b^2+c^2\right)}{\text { 2 }}\right)$

$=98(1)-98\left(\frac{0-1}{2}\right)=98+49=147$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.