- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
यदि $a, b, c, d$ चार अलग संख्याएँ एक समुच्चय $\{1,2,3, \ldots, 9\}$ से चुनी जाती हैं, तब $\frac{a}{b}+\frac{c}{d}$ का न्यूनतम मान होगा
A
$\frac{3}{8}$
B
$\frac{1}{3}$
C
$\frac{13}{36}$
D
$\frac{25}{72}$
(KVPY-2017)
Solution
(d)
We have,
$a, b, c, d$ are four distinct number from the set $\{1,2,3, \ldots, 9\}$.
The minimum value of $\frac{a}{b}+\frac{c}{d}$ is possible
when $a=2, b=9, c=1, d=8$
$\therefore \quad \frac{2}{9}+\frac{1}{8}=\frac{16+9}{72}=\frac{25}{72}$
Standard 11
Mathematics