Gujarati
4-2.Quadratic Equations and Inequations
normal

यदि $a, b, c, d$ चार अलग संख्याएँ एक समुच्चय $\{1,2,3, \ldots, 9\}$ से चुनी जाती हैं, तब $\frac{a}{b}+\frac{c}{d}$ का न्यूनतम मान होगा

A

$\frac{3}{8}$

B

$\frac{1}{3}$

C

$\frac{13}{36}$

D

$\frac{25}{72}$

(KVPY-2017)

Solution

(d)

We have,

$a, b, c, d$ are four distinct number from the set $\{1,2,3, \ldots, 9\}$.

The minimum value of $\frac{a}{b}+\frac{c}{d}$ is possible

when $a=2, b=9, c=1, d=8$

$\therefore \quad \frac{2}{9}+\frac{1}{8}=\frac{16+9}{72}=\frac{25}{72}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.