यदि $a, b, c, d$ चार अलग संख्याएँ एक समुच्चय $\{1,2,3, \ldots, 9\}$ से चुनी जाती हैं, तब $\frac{a}{b}+\frac{c}{d}$ का न्यूनतम मान होगा
$\frac{3}{8}$
$\frac{1}{3}$
$\frac{13}{36}$
$\frac{25}{72}$
समीकरण $x|x|-5|x+2|+6=0$ के वास्तविक मूलों की संख्या है :
माना कि $f(x)=x^4+a x^3+b x^2+c$ वास्तविक गुणांकों (real coefficients ) वाला एक ऐसा बहुपद (polynomial) है कि $f(1)=-9$ है। मान लीजिये कि $i \sqrt{3}$, समीकरण $4 x^3+3 a x^2+2 b x=0$ का एक मूल है, जहां $i=\sqrt{-1}$ है। यदि $\alpha_1, \alpha_2, \alpha_3$, और $\alpha_4$, समीकरण $f(x)=0$ के सभी मूल हैं, तब $\left|\alpha_1\right|^2+\left|\alpha_2\right|^2+\left|\alpha_3\right|^2+\left|\alpha_4\right|^2$ का मान. . . . . है।
मान $S=\left\{x: x \in \mathbb{R} \text { एवं }(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10 \text { हैं }\right\}$ है। तब $\mathrm{n}(\mathrm{S})$ बराबर है-
समीकरण |${x^2}$ + 4x + 3| + 2x + 5 = 0 के वास्तविक हलों की संख्या है
यदि $p$ तथा $q$ दो वास्तविक संख्याऐं इस प्रकार है, कि $p + q =3$ तथा $p ^4+ q ^4=369$ है, तो $\left(\frac{1}{ p }+\frac{1}{ q }\right)^{-2}$ का मान होगा-