यदि $a, b, c, d$ चार अलग संख्याएँ एक समुच्चय $\{1,2,3, \ldots, 9\}$ से चुनी जाती हैं, तब $\frac{a}{b}+\frac{c}{d}$ का न्यूनतम मान होगा
$\frac{3}{8}$
$\frac{1}{3}$
$\frac{13}{36}$
$\frac{25}{72}$
यदि $|x - 2| + |x - 3| = 7$, तब $x =$
समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
समीकरण
$\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0 \text {, }$
$x > 0$ के हलों की संख्या है ..............
यदि $p$ तथा $q$ दो वास्तविक संख्याऐं इस प्रकार है, कि $p + q =3$ तथा $p ^4+ q ^4=369$ है, तो $\left(\frac{1}{ p }+\frac{1}{ q }\right)^{-2}$ का मान होगा-