Trigonometrical Equations
hard

જો $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$2n\pi + \frac{\pi }{4}$

B

$2n\pi \pm \frac{\pi }{4}$

C

$2n\pi - \frac{\pi }{4}$

D

એકપણ નહિ.

Solution

(b) $2{\cos ^2}\theta – (\sqrt 2 + 1)\cos \theta – 1 + \frac{{(\sqrt 2 + 1)}}{{\sqrt 2 }} = 0$

$ \Rightarrow $ $\cos \theta = \frac{{(\sqrt 2 + 1) \pm \sqrt {{{(\sqrt 2 + 1)}^2} – \frac{8}{{\sqrt 2 }}} }}{4}$

$ \Rightarrow $ $\cos \theta = \cos \left( {\frac{\pi }{4}} \right)$

$ \Rightarrow $ $\theta = 2n\pi \pm \frac{\pi }{4}$.

Trick : Since $\theta = \frac{\pi }{4}$ satisfies the equation and therefore the general value should be $2n\pi \pm \frac{\pi }{4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.