જો $Arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાક દર્શાવે તો $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ ની કિમત મેળવો
$0$
$\frac{\pi }{2}$
$\pi$
$Arg$ $z$
જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા છે કે જેથી $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ તો arg $({z_1}) - $arg $({z_2})$ = . . . ..
$arg\left( {\frac{{3 + i}}{{2 - i}} + \frac{{3 - i}}{{2 + i}}} \right)$= . . . ..
જો $z$ એ એક સંકર સંખ્યા હોય કે જેથી $|z|^2 - |z| - 2 < 0$ થાય તો $|z^2 + z sin \theta|$ ની કોઈ પણ $\theta$ માટે કિમત મેળવો.
સંકર સંખ્યા $z$ અને બીજી સંકર સંખ્યાનો સરવાળો $\pi $ હોય તો બીજી સંકર સંખ્યા . . . . થાય
જો $|z_1| = 2 , |z_2| =3 , |z_3| = 4$ અને $|2z_1 +3z_2 +4z_3| =9$ ,હોય તો $|8z_2z_3 +27z_3z_1 +64z_1z_2|$ ની કિમત મેળવો