7.Binomial Theorem
hard

If $\frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots . .+\frac{{ }^{11} C_9}{10}=\frac{n}{m}$ with $\operatorname{gcd}(n, m)=1$, then $n+m$ is equal to

A

$2041$

B

$2024$

C

$2014$

D

$2043$

(JEE MAIN-2024)

Solution

$ \sum_{\mathrm{r}=1}^9 \frac{{ }^{11} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1} $

$ =\frac{1}{12} \sum_{\mathrm{r}=1}^9{ }^{12} \mathrm{C}_{\mathrm{r}+1}$

$ =\frac{1}{12}\left[2^{12}-26\right]=\frac{2035}{6} $

$\therefore \mathrm{m}+\mathrm{n}=2041$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.