For integers $n$ and $r$, let $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{ll}{ }^{n} C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$
The maximum value of $k$ for which the sum $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ i\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ exists, is equal to ...... .
Not define
$24$
$36$
$20$
If $a$ and $d$ are two complex numbers, then the sum to $(n + 1)$ terms of the following series $a{C_0} - (a + d){C_1} + (a + 2d){C_2} - ........$ is
Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, then the value of ${C_0} + {C_2} + {C_4} + {C_6} + .....$ is
$\sum\limits_{n = 0}^4 {{{\left( {1009 - 2n} \right)}^4}\left( \begin{gathered}
4 \hfill \\
n \hfill \\
\end{gathered} \right)} {\left( { - 1} \right)^n}$ is
The value of$^n{C_1}\sum\limits_{r = 0}^1 {^1{C_r}} { + ^n}{C_2}\left( {\sum\limits_{r = 0}^2 {^2{C_r}} } \right){ + ^n}{C_3}\left( {\sum\limits_{r = 0}^3 {^3{C_r}} } \right) + ......{ + ^n}{C_n}\left( {\sum\limits_{r = 0}^n {^n{C_r}} } \right)$ is equal to